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Bender-Wu branch points in the cubic oscillator 
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Madrid, Spain 

Received 20 March 1995 

Abstrad. The analytic contbution of the resomces of the cubic anharmonic oscillator to 
complex values of the coupling collstanl is studied with semiclassical and numerical methods. 
Bender-Wu branch points, at which level crossing OCCUIS. are calculated and labelled by a 
process of analytic-continuation. The different resonan- are the values that a single analytic 
function takes on different sheets of a Riemann surface whose topology is described. 

1. Introduction 

In their famous 1969 paper [l], Bender and Wu studied the analytic continuation of the 
eigenvalues of the quartic anharmonic oscillator to complex values of the coupling constant. 
One of their‘ most noteworthy results was that the energy levels have an infinite number 
of branch points at which level crossing OCCUIS. Bender and Wu obtained asymptotic 
formulae for the positions of these branch points, and performed numerical calculations 
of the associated eigenvalues to describe the analytic configuration of the corresponding 
Riemann surface. This paper was closely followed by another in which Simon [2] gave 
rigorous proofs of many of the properties discussed by Bender and Wu, and extended their 
results to some multidimensional coupled anharmonic oscillators. 

Bender-Wu branch points are, not a peculiarity of the quartic anharmonic oscillator, 
and among the several models which have been studied L3-91 one can find rigorous results 
for general periodic potentials [SI, explicit solutions for delta-function perturbations of a 
square well [8], and polynomial potentials for which a finite number of eigenfunctions can 
be explicitly calculated (the so-called ‘quasi-integrable’ systems [9]). 

New interest in the subject arose when Benassi ef al [lo] realized the role played by 
Bender-Wu branch points in the asymptotic behaviour at large external electric fields of 
the resonances of the LoSurdoStark Hamiltonian for atomic hydrogen. The corresponding 
Schrodinger equation is separable in parabolic coordinates, and each separated equation 
is equivalent to a two-dimensional isotropic quartic anharmonic oscillator. Benassi ef al 
determined the high-field asymptotics of a resonance thought to come from the ground 
state, and suggested that for excited states the asymptotic behaviour would be determined 
by a similar formula, whose validity would depend on the number of Bender-Wu branch 
cuts crossed by the separation constants as the electric field increased from zero to infinity. 
Benassi and Grecchi [ll] plotted these trajectories for the ground state and one excited 
state but, lacking a method to calculate the positions of the branch points, they could only 
conjecture qualitatively the locations of tbe cuts for their formula to be valid. 

A few years later, Shanley [I21 addressed the original problem of calculating accurately 
the branch points of the one-dimensional quartic anharmonic oscillator. He used an iterative 
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procedure based on a tenth-order Adams-Moulton numerical integration of the Schrodinger 
equation, succeeded in locating to seven-digit accuracy some branch points, and pointed out 
an inconsistency in the assignment that Bender and Wu made of what levels cross at each 
branch point (which in turn determines the topology of the associated Riemann surface). 

Most recently, in the context of the LoSurdc4ark effect, Alvarez and Silverstone [I31 
found a simple iterative algorithm to calculate numerically the position of the Bender-Wu 
branch points to arbitrary precision, and gave a detailed picture of their role in the LoSurdo- 
Stark effect, following the separation constants and resonance eigenvalues as the electric 
field increases from zero to infinity. The analytic configuration of the Riemann surface 
was clarified and asymptotic expansions for the separation constants and eigenvalues as the 
electric field tends to infinity were obtained. 

In this paper, the same numerical and semiclassical methods are applied to study the 
analytic configuration of the eigenvalues of the cubic anharmonic oscillator, a standard 
textbook example of perturbation theory which, for purely imaginary values of the coupling 
constant, describes the universal properties of the Lee-Yang edge singularity of the king 
model 114-161. Complex eigenvalues (resonances) of the cubic anharmonic oscillator 
for real values of the coupling constant were first calculated numerically by Yaris er al 
[17], who emphasized the empirical validity of complex dilation even for this non-dilation- 
analytic potential, gave the first term of the Rayleigh-Schrodinger perturbation series and 
the (exponentially small) asymptotic behaviour of the imaginary part of these eigenvalues 
as the coupling constant tends to zero along the real axis. These results were extended 
by Alvarez [IS, 191, who also found the asymptotic behaviour of the eigenvalues for large 
values of the coupling constant. In section 2 of the present paper we briefly review the 
definition and characterization of resonances, the consequences of Symanzik scaling and 
the large coupling-constant behaviour. Section 3 is dedicated to the numerical calculation 
of the branch points, at which level crossing occurs. The different resonances turn out to 
be the values that a single analytic function takes on different sheets of a Riemann surface. 
The structure of this surface is determined by the pattern of crossings (i.e. the labelling of 
the branch points) which is identified by analytic continuation. Section 4 is dedicated to 
the small coupling-constant behaviour of the resonances, in particular when the coupling 
constant tends to zero crossing an infinite number of branch cuts. The paper ends with a 
brief summary. 

2. Resonances of the cubic anharmonic oscillator 

Physical intuition suggests that when the coupling constant g is positive, the cubic 
anharmonic oscillator Hamiltonian, 

H = i p 2  + i k x 2  + gx3 (1) 
does not have bound states but resonances: the particle, initially confined in the potential 
well, will escape to x = -CO by tunnelling. This apparently simple Hamiltonian poses, 
however, a mathematically complicated problem, since the minimal operator generated by 
the action of the formal expression (1) on the space of infinitely-differentiable functions of 
compact.support admits infinitely many self-adjoint extensions (see, for example, [ZO]), and 
there is no physical criterion to single one of them out. This is the quantum analogue of 
the fact that a classical particle initially moving in (-CO, -1/2g) reaches n = -CO in a 
finite amount of time. Nevertheless, Caliceti etal 1211 showed that if the coupling constant 
g is complex and Img =- 0, the operator (1) has non-empty discrete spectrum (i.e. isolated 
eigenvalues of finite multiplicity) and the analytic continuation of these eigenvalues across 
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the real axis is not single valued. The global propeaies of this analytic continuation are 
conveniently studied characterizing the resonances by boundary conditions in appropriate 
sectors of the complex plane. If g # 0, the differential equation 

has a unique solution (up to a multiplicative constant) @+(x) with asymptotic behaviour 
dominated by 

(3) 2 I j Z  5/2) @+W - exp(-:g x 

Similarly, there exists a solution with asymptotic behaviour dominated by 

$-(XI - e~p( -$g ' /~ ( -x )~ /~ )  

as ( - x )  + 00 in the sector 

(6) 
The complex number E(k ,  g) is a resonance eigenvalue if there exists a solution @ ( x )  (the 
resonance eigenvector) of the differential equation (2) for which both asymptotic boundary 
conditions (3) and (5) hold in the common subsector 

(7) 
For example, one can imagine that the differential equation (2) is integrated along the rays 
arg(&x) = a/lO - arg(g)/5, which lie halfway in the sector of convergence given by 
equation (7). 

I 1 -737 < 5 arg(g) + g arg(x) < 4.. 

5 1 0 < 4 arg(g) + 5 argx < 5". 

A key property of the resonances follows from the change of variable x + Ax: 

E(k, g) = A-'E(A4k, h5g). 

E(k, g) = E(k, gei5") 

E(k ,  g) = e-inE(k, gei"P). 

(8)  

(9) 
singularity at the origin (in the sense defined by Simon 

(10) 

Equation (8) is usually known as Symanzik scaling [Z]. For A = ein, it shows that 

that is to say, thee is a global 
[Z]) with 'two and a half Riemann sheets, and for h = einj2 one obtains 

Furthermore, since A = k-]I4 scales out the harmonic constant k ,  hereafter we will consider 
only 

E ( g )  = E(1, g). (11) 
With an argument based on Bore1 summability, Caliceti ef al [21] showed that for 
arg(g) = a/2, the resonances are real. A slightly more general statement is 

(12) 
where the asterisk denotes complex conjugation and the arguments have to be understood 
modulo 5n. In particular, for arg(g) = x / 2  and 3a the resonances are real, and using 
equation (10) it can be checked that for arg(g) = 7 ~ / 4  and 17x/4 the resonances are 
purely imaginary. 

It is easy to find also an explicit formula for the large coupling-constant behaviour of 
the resonances [18], which follows from the application of Dunham's condition [ZZ] to a 

in -iarg(g) * E(lgle'qk)) = E(lgle e 1 
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path enclosing the two transition points XI - ( E / g ) ' l 3  and xz - (E/g)1/3e-i"/3 in the 
appropriate sectors of the complex plane: 

where n = 0, 1,2, . . . is the usual harmonic oscillator quantum number. 

t ' " ' ~ ' ~ ' ' " ' ' ' ~ ~ ~ ~ . ~ ~ ~ ~ ~  
0 t 2 3 4 5 

arS(slh 

Fiyre 1. Real and imapi- p m  of then = 0 resonance as a function of the argument of the 
coupling constant g for a fixed value of lgl = 1. 

Figure 2. Path in the complex E plane of the n = 0, I and 2 resonances for g = eirreb), 
;Irg(g) E IO. 5x1. 

AI1 this information is illustrated in figures 1 and 2. The resonance eigenvalues have 
been calculated by expansion of the resonance eigenvectors in a set of squareintegrable 
functions along a ray lying halfway in the sector of convergence. Figure 1 shows both Re E 
and h E for the n = 0 resonance as a function of arg(g) for a fixed value of Igl = 1, 
while figure 2 shows the path in the complex E plane of the n = 0, 1, and 2 resonances 
for g = dag@), arg(g) E [O, 5x1. 
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3. Bender-Wu branch points 

Equation (13) and figure 2 show that for fixed large Igl, the resonances describe concentric, 
non-intersecting (asymptotically) circular paths as arg(g) increases from 0 to 5n. When 
Igl decreases, these paths are progressively distorted until, for certain values of g, they 
cross. There are several equivalent analytic characterizations  of these branch points [Z]. 
For example, 

l @ ( n ) 2 d r  = O  (14) 

where y denotes the above-mentioned integration path (note that the integrand is the square 
of the resonance wavefunction, not the modulus squared), or the fact that the derivative of 
the resonance energy with respect to the coupling constant becomes infinite at the branch 
point (see again [Z]). From a calculational point of view it is most convenient to take 
advantage of the square-root nature of the branch points. Suppose one such crossing occurs 
at g,, and denote by E+(g) and E - ( g )  the two eigenvalues involved in the crossing, i.e. 
the two branches of a Puiseaux series in a neighbourhood of g,: 

E&) = E(gJ A a~/z(g - gc)”2+ . . . . (15) 

Pick two initial values gl and gz close to the branch point g,, and note that 

The form of the solution for g, in the previous equation suggests the following iterative 
algorithm: For i = 1,2,. . ., 

gi - gi+i Qi+l 

1 - Qi+i  
gi+2 = 

The eigenvalues E+(g) and E-(g) can be easily calculated by the expansion in 
square-integrable functions mentioned above, and the algorithm of equations (17) and (18). 
converges without difficulty in typically ten iterations. To understand the structure of the 
associated Riemman surface, let us consider first a group of branch points centred around 
arg(g) = 9n/8 with arguments extending symmehically by up to in/8 around this ray. The 
‘lowest’ branch points of this group are shown in table 1. Note that the algorithm described 
by equations (17) and (18) gives only the position g, and eigenvalue E&) of each branch 
point. What does not come out directly of the algorithm is the fact that each branch 
point can be uniquely labelled by a pair of different non-negative integers, nl and n2, which 
identify the unperturbed levels involved in the crossing. This assignment requires a series of 
numerical calculations in which the coupling constant starts at g = 0, where each eigenvalue 
can be labelled by its harmonic oscillator quantum number E,, = (n + i), then traces a path 
in tbe complex g plane encircling just one branch point, and returns to the origin. One such 
path is shown in figure 3(a). It turns out that each level, followed by continuity, returns 
to its initial value, except two of them which are exchanged and provide the labelling of 
the branch point, as can be seen in the example of figure 3. Furthermore, for each pair of 
different quantum numbers there is exactly one branch point (with n < arg(g,,,,) < 5n/4) 
that exchanges them. Once this classification scheme is known, it is possible to mimic the 
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Figure 3. (0) Path in the complex g plane staving al the origin and encircling just one of the 
branch points; (b)-(f) Corresponding paths in the complex E plane for the n = 0 to n = 4 
moll an Ce s. 

calculation of Bender and Wu in [l] for the asymptotic evaluation of equation (14) and 
obtain the following formula for the position of the branch points: 

The validity of this equation is illustrated in figure 4. 
Let us consider now the overall distribution of branch points. Besides those with 

n c arg(gn,n2) -= 5z/4, the symmetry properties of the eigenvalues given by equations 
(9), (10) and (12) imply the existence of another three equivalent families of branch points 
centred around 19rrj8, 29n/8 and 39ir/8 respectively, with arguments extending again 
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Figure 4. Branch points of the cubic anharmonic oscillator with n < arg(g) c 5nf4. 

0 1  
0 2  
0 3  
0 4  
0 5  
1 2  
1 3  
I 4  
1 5 
2 3  
2 4  
2 5  
3 4  
3 5  

0.138 095904611 6579 
0.102869748 1002435 
0.084633451 12971 I2 
0.073 394 335 327 6270 
0.065642745448 3712 
0,102869748 1002435 
0.087950489301 7066 
0.076739 80605651 18 
0.068 544 918 309 3794 
0.084633451 1297112 
0.076 739 806 OS6 51 18 
0.069611 9767727027 
0.073 394 335 3276270 
0.068 544 918 3093794 

3.5342917352885114 
3.706271 0740378341 
3.773037003 918 1804 
3.808243510 665 8928 
3.830021 024062 1947 
3.362 312 396 539 2006 
3.534291 735 2885174 
3.628 195 462 099,9905 
3.685912477 6667937 
3.295546466658 8544 
3.4403880084770443 
3.534 29 1 735 288 5174 
3260339959911 1419 
3.3826109929102411 

0.614 395 336 
0.620 728 761 
0.618915136 
0.616567624 
0.614450301 
1.532741 868 
1.584 122 784 
1.602 306 092 
1.609 648472 
2.424204411 
2.509 57d 184 
2.552425738 
3~307 175834 
3.415 577488 

0.072245524 
0.049 472 828 

0.034130938 
0.030 664771 
0.126931361 
0.108712578 
0.090 093 150 
0.076752009 
0.164619861 
0.167008230 
0.1498l0471 
0.192238778 
0.217546307 

0.039~7i861 

4 5 . 0.0656427454483712 3.2385624465148401 4.186432156 0.213822351 

symmemically by up to f ~ / 8 .  In particular K and 5n, i.e. the real axis, is a limit of 
arguments of singularities (hence the multivaluedness of the analytic continuation across 
this axis realized by Caliceti et al [21]). Branch cuts can be drawn between corresponding 
pairs of branch points, and the Riemann surface can be described as an infinite number of 
'two and a half' sheets joined to each other at exactly four branch points, with a global 3 
singularity at the origin, which is a limit point of the four families of branch points. 

4. Smalt coupling-constant asymptotics 

To study the small coupling-constant asymptotics let us introduce the new variable z = 
gx + $. The differential equation is now 
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and the sector of convergence is 

0 .< arg(z) - < )K. (21) 
This particular scaling fixes the zeroth-order turning points and allows some additional 
symmetry features to be understood. For example, if arg(g) = 7r/2 one can take 
arg(z) = n/2 and the differential equation becomes 

(22) - ~ l g l 4 w ” f i ( - x B + ~ x  1 I -gZE+&w = O  

Re(g 2 E) = &. 
with x real. Since the eigenvalues are real, one obtains 

(23) 
Similarly, if arg(g) = 9n/S, that is to say, in the bisector of the first family of branch 
points, one can take arg(z) = z, the differential equation has the same structure as equation 
(22) with i replaced by -i, and equation (23) still holds (e.g., gn,h+l in table 1). 

The asymptotic behaviour can be obtained via, the relation between the Rayleigh- 
Schrijdinger perturbation theory and the Jeffreys-Wentzel-Kramers-Brillouin (M) series 
[19,23], i.e. the perturbation series will be generated using the IWKB with g2 playing the 
role of A. The wavefunction w is expanded as a IWKB series in g2, 

w = exp ($1 Sdz) 

where the IWKB function S(z) satisfies a Riccati equation 

(26) 1 2 ,  iS(Z)Z + 7g s (z) - p(z) = 0 

which can be recursively solved for the S(N). The quantization condition ‘is given by 
Dunham’s formula [22] 

S dz = ng2 &i 
where r is a path enclosing the two turning points in the appropriate sectors of the complex 
plane (the third turning point gives an exponentially small contribution). Details of the 
calculation to high order can be seen in [IS, 191 and will be omitted; for the moment it is 
enough to consider the second-order quantization formula, 

where the integration can be explicitly performed to give 

-(Z+ - z-)’(Z+ - ZO)’’’ ~ F I  ( --, -; 3; - L+--Z)-(n+i)g2.(29) 
1 

4-h 2 2 z+-zo 
The turning points zo and z* are the roots of the polynomial 

p(z) = z3 - +Z - g2E + 108 (30) 

zo = -L 3 2  F 1 (L 3 ’  -I. 3 ’ 2 ’  I. 54g2E) (31) 
Z* -;ZO + (2gZE)1’22F1(i, a ;  4; 54g2E). (32) 

which can be Written in terms of Gauss hypergeometric ~ F I  function: 
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The last step is to perform the appropriate expansions in the small coupling-constant limit 
g + 0. There are two different regimes, corresponding to the two distinguished values 
g Z E  = 0 and g 2 E  = 1/54 for which the polynomial p ( z )  has a double root. 

The lowest-order term of the expansion of equation (29) around g 2 E  = 0 is 

g2E&) - (n + &)gZ 

E. (g) - (n + 4) 

(33) 

(34) 
the first term of the usual RayleighSchrodinger series. This expansion is asymptotic to 
the eigenvalues for 0 < arg(g) < x independently of the eigenvalue, and even in a certain 
region beyond arg(g) = n for each particular eigenvalue, as can be seen from the positions 
of the branch points; for example, the results of figure 3(b) for E&) can be accounted 
for with second-order perturbation theory. As mentioned above, higher-order terms can be 
readily obtained and are tabulated in 1191. For later comparison, the following equation 
shows the structure of the asymptotic series up to terms in g4: 

(35) 
Consider now the expansion of equation (29) around the second value g 2 E  = 1/54, which 
to lowest order yields 

 or^ 

~,(g) - (n + $) - [$(n  + i)2 + $18~ - [w(n + 4Y + s ( n  + +)1g4 -.  . . . 

i(-gzEn(g)~+ j?i) - (n  + +)g2 (36) 
or 

This expansion is asymptotic to the eigenvalues for 5n/4 < arg(g) < 9x/4 independently 
of the eigenvalue, and in a larger region for each particular eigenvalue. Again, higher-order 
terms can be easily calculated and the result to order g4 is 

+ i [ e ( n  + +)3 + E(n +-&)1g4 -.  . . . (38) 
Finally, to illustrate these results consider~the path of figure 5(u), in which the coupling 
constant g starts upwards along the ray arg(g) = n/2, then traces counterclockwise an arc 
of circle to arg(g) = 3x/2 and finally returns to the origin along this ray. This path encloses 
all the branch points of the first family, and its initial and final portions are in the regions 
of validity of equations (35) and (38) respectively. In figure 5(b), the markers correspond 
to (exact) numerical calculations of the n = 1 resonance along the path, while the lines 
correspond to the results given by the asymptotic formulae~(the n = 1 resonance has been 
chosen as an example because the relevant features of the plot can be seen in the same 
scale; similar results are obtained for the other resonances). 

5. Summary 

The resonances of the cubic anharmonic oscillator are the values that a single analytic 
function takes on different sheets of a Riemann surface. This surface consists of an infinite 
number of 'two and a half sheets joined to each other at exactly four square-root branch 
points. The origin, which globally behaves as a $ singularity, is a limit point of the four 
families of branch points. Semiclassical formulae and efficient numerical algorithms have 



4598 G Alvarez 

R l P  

Figure 5. (U)  Path in the complex g plane enclosing all the branch points with k c arg(g) c 
5~14;  (b) the markers correspond to numerical calculations of El@) along the path (a); the 
lines correspond to the results given by suitable asymptotic expansions discussed in the text. 

been developed to locate the branch points, and a process of numerical analytic continuation 
has permitted the identification of what levels cross at each branch point, which in tum is 
a description of the topology of the Riemann surface. Finally, a m expansion provides 
a unified derivation of the asymptotic behaviour of the resonances as the coupling constant 
tends to zero in different regions of the Riemann surface. These results have been checked 
against exact numerical calculations. 
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